Increasing the efficiency of technology and its impact on solving the blackout crisis

Document Type : Research Paper

Authors

1 Department of Energy and Eenvironment Policy, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

2 Department of Energy and Eenvironment Policy, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.

3 Department of Energy Economics, Faculty of Modern Sciences and Techniques, Tehran University, Tehran, Iran.

Abstract

The demand increasing for electricity during the peak of the electricity grid led to several blackouts in the summer of 1397 . Reduction of investment in the power plant sector due to unprincipled privatization of power plants, failure to implement the next phases of the plan to target subsidies and non-payment of the difference between the obligatory and cost price leading to government Reduced electricity production. Cooling loads increase network loads in summer compared to other seasons. Considering that 65% of the country's buildings use water coolers, one of the ways to control the growth of the peak load of the national electricity grid is to increase the energy efficiency of water coolers. In this study with the help of bottom-up engineering modeling and behavioral functions, As the efficiency of water coolers increases from G to A, B and C, the peak of Tehran's electricity grid peak decreases by 21.08, 19.83 and 17.72%, respectively. This strategic act is effective in the efficiency of cooling equipment, as much as 2.5 years of the budget for the development of the country's power plant capacity. This study, while investigating the estimation of the effective cooling load in the peak of Tehran's electricity network, has estimated the effect of increasing the efficiency of the most widely used cooling equipment (water cooler) in the peak of Tehran's electricity network. The achievement can be used as a tool for better peak policy and, consequently, to prevent a blackout crisis.

Keywords

Main Subjects


احمدی، م.، ملکی، ع.، و ودادی کلانتر، س. (1396). برآورد میزان صرفه‌جویی انرژی در صورت جایگزینی کولرهای آبی برچسب A در بخش ساختمان شهر تهران (مسکونی). فصلنامه پژوهش‌های سیاست گذاری وبرنامه ریزی انرژی، 3(9)، 47-75.
آزاد، ص.، قریشی، ح. ر.، و امیدی، ا. (1397). ارزیابی ابعاد بحران تأمین برق تابستان و راهکارهای مقابله با آن. مرکز پژوهش‌های مجلس شورای اسلامی.
 مرکز پژوهش‌های مجلس شورای اسلامی. (1391). نگاهی به خصوصی سازی صنعت برق کشور با رویکردی بر تجارت جهانی. مرکز پژوهش های مجلس شورای اسلامی.
حلیمی، ق. و توکلی، ا. ر. (1394). مطالعه و بررسی تاثیر بار سرمایش در پیک مصرف برق کشور. مقاله ارائه شده در: اولین کنگره ملی طراحی نوین مهندسی با رویکرد توسعه پایدار و حفظ محیط زیست، سمنان، 16 مهر 1394.
مقیمان، محمد. (1393). مهندسی تهویه مطبوع و حرارت مرکزی. چاپ 7. مشهد: دانشگاه فردوسی.
مرکز آمار ایران. (1396). نتایج آمارگیری از مصرف حامل های انرژی و ویژگی های محیط زیستی خانوارهای شهری 1395. مرکز آمار ایران.
ودادی کلانتر، س.، ملکی، ع.، و احمدی، م. (1395). بررسی بازارهای انرژی خزر به کمک معیار ترکیبی امنیت تقاضای انرژی کشورهای ناحیه خزر در سال 2015 و افق 2030. فصلنامه مطالعات راهبردی سیاست‌گذاری عمومی، 6(20)، 67-84.
References
Abushakra, B., Sreshthaputra, A., Haberl, J. S., & Claridge, D. E. (2001). Compilation of diversity factors and schedules for energy and cooling load calculations, ashrae research project 1093-RP, final report. Retrieved from Energy Systems Laboratory website: https://oaktrust.library.tamu.edu/handle/1969.1/2013
Ahmadi, M., Maleki, A., & Vedadi Kalantar, S. (2018). [Energy saving estimation of replacing the A-Class evaporative coolers in the Tehran buildings (residential) (Persian)]. Quarterly Journal of Energy Policy and Planning Research, 3(4), 57-74 http://epprjournal.ir/article-1-462-fa.html
Azad, S., Ghoreishi, H. R., & Omidi, E. (2018). [Assessing the dimensions of the summer electricity supply crisis and solutions to deal with it (Persian)]. Islamic Parliament Research Center of the Islamic Republic of Iran. Retrieved from https://rc.majlis.ir/fa/report/show/1064293
Chen, Y., Hong, T., & Luo, X. (2018). An agent-based stochastic occupancy simulator. Building Simulati, 11(1), 37-49. [DOI:10.1007/s12273-017-0379-7]
da Silva, F. L., Oliveira, F. L. C., & Souza, R. C. (2019). A bottom-up bayesian extension for long term electricity consumption forecasting. Energy, 167, 198-210. [DOI:10.1016/j.energy.2018.10.201]
Deru, M., et al. (2011). US department of energy commercial reference building models of the national building stock. [DOI:10.2172/1009264]
Fan, C., Wang, J., Gang, W., & Li, S. (2019). Assessment of deep recurrent neural network-based strategies for short-term building energy predictions. Applied Energy, 236, 700-10. [DOI:10.1016/j.apenergy.2018.12.004]
Ghedamsi, R., et al. (2016). Modeling and forecasting energy consumption for residential buildings in Algeria using bottom-up approach. Energy and Buildings, 121, 309-17. [DOI:10.1016/j.enbuild.2015.12.030]
Halimi, G., & Tavakoli, A. (2015). [Study and study of the effect of cooling load on the peak of electricity consumption in the country (Persian)]. The First National Congress of Modern Engineering Design With the Approach of Sustainable Development And Environmental Protection (Persian)], Semnan, Iran, 8 October 2015. https://civilica.com/doc/483640/
Happle, G., Fonseca, J. A., & Schlueter, A. (2018). A review on occupant behavior in urban building energy models. Energy and Buildings, 174, 276-92. [DOI:10.1016/j.enbuild.2018.06.030]
Happle, G., Fonseca, J. A., & Schlueter, A. (2017). Effects of air infiltration modeling approaches in urban building energy demand forecasts. Energy Procedia, 122, 283-8. [DOI:10.1016/j.egypro.2017.07.323]
Heiple, S., & Sailor, D. J. (2008). Using building energy simulation and geospatial modeling techniques to determine high resolution building sector energy consumption profiles. Energy and Buildings, 40(8), 1426-36. [DOI:10.1016/j.enbuild.2008.01.005]
Hu, S., Yan, D., & Qian, M. (2019). Using bottom-up model to analyze cooling energy consumption in China’s urban residential building. Energy and Buildings, 202, 109352. [DOI:10.1016/j.enbuild.2019.109352]
Indraganti, M., & Boussaa, D. (2017). Comfort temperature and occupant adaptive behavior in offices in Qatar during summer. Energy and Buildings, 150, 23-36. [DOI:10.1016/j.enbuild.2017.05.063]
Islamic Parliament Research Center of the Islamic Republic of Iran. (2012). [A look at the privatization of the country’s electricity industry with an approach to global experiences (Persian)]. Islamic Parliament Research Center of the Islamic Republic of Iran. Retrieved from https://rc.majlis.ir/fa/news/show/809880
Knoeri, C., Goetz, A., & Binder, C. R. (2014). Generic bottom-up building-energy models for developing regional energy transition scenarios. Paper presented at The Social Simulation Conference, Barcelona, Spain, 1-5 September 2014. https://ddd.uab.cat/record/128237
Labandeira, X., Labeaga, J. M., & Rodríguez, M. (2006). A residential energy demand system for Spain. The Energy Journal, 27(2), 87-112. [DOI:10.5547/ISSN0195-6574-EJ-Vol27-No2-6]
Lins, M. P. E., Da Silva, A. C. M., & Rosa, L. P. (2002). Regional variations in energy consumption of appliances: conditional demand analysis applied to Brazilian households. Annals of Operations Research, 117(1-4), 235-46. [DOI:10.1023/A:1021533809914]
McKenna, R., Merkel, E., Fehrenbach, D., Mehne, S., & Fichtner, W. (2013). Energy efficiency in the German residential sector: A bottom-up building-stock-model-based analysis in the context of energy-political targets. Building and Environment, 62, 77-88. [DOI:10.1016/j.buildenv.2013.01.002]
Moghiman, M. [Engineering of air conditioning and central heating (Persian)]. 7th ed. Mashhad: Ferdowsi University. http://opac.nlai.ir/opac-prod/bibliographic/692162
Nägeli, C., Jakob, M., Catenazzi, G., & Ostermeyer, Y. (2020). Towards agent-based building stock modeling: Bottom-up modeling of long-term stock dynamics affecting the energy and climate impact of building stocks. Energy and Buildings, 211, 109763. [DOI:10.1016/j.enbuild.2020.109763]
Österbring, M., et al. (2016). A differentiated description of building-stocks for a georeferenced urban bottom-up building-stock model. Energy and Buildings, 120, 78-84. [DOI:10.1016/j.enbuild.2016.03.060]
Quan, S. J., Li, Q., Augenbroe, G., Brown, J., & Yang, P. P. J. (2015). Urban data and building energy modeling: A GIS-based urban building energy modeling system using the urban-EPC engine. In S. Geertman, J. Ferreira, R. Goodspeed, & J. Stillwell (Eds.), Planning Support Systems and Smart Cities (pp. 447-69). Cham: Springer. [DOI:10.1007/978-3-319-18368-8_24]
Richardson, I., Thomson, M., & Infield, D. (2008). A high-resolution domestic building occupancy model for energy demand simulations. Energy and Buildings, 40(8), 1560-6. [DOI:10.1016/j.enbuild.2008.02.006]
Saha, G. P., & Stephenson, J. (1980). A model of residential energy use in New Zealand. Energy, 5(2), 167-75. [DOI:10.1016/0360-5442(80)90005-5]
Vadadi Kalantar, S., Maleki, A., & Ahmadi, M. (2016). [Caspian energy markets: Implementation of energy security combined criteria from 2015 to 2030 (Persian)]. Journal of Strategic Studies of Public Policy, 6(20), 67-84. http://sspp.iranjournals.ir/article_23296.html
Statistical Center of Iran. (2018) [Publication of electronic version of the results of statistics on the consumption of energy carriers and the environmental characteristics of urban households (Persian)]. Statistical Center of Iran. Retrieved from https://www.amar.org.ir/news/
Streicher, K. N., et al. (2019). Analysis of space heating demand in the Swiss residential building stock: Element-based bottom-up model of archetype buildings. Energy and Buildings, 184, 300-22. [DOI:10.1016/j.enbuild.2018.12.011]
Swan, L., Ugursal, V. I., & Beausoleil-Morrison, I. (2008). A new hybrid end-use energy and emissions model of the Canadian housing stock. Paper presented at The 3rd Canadian Solar Buildings Conference, Toronto, Canada,15-17 August 2008. https://e3p.jrc.ec.europa.eu/node/93
Theodoridou, I., Papadopoulos, A. M., & Hegger, M. (2011). A typological classification of the Greek residential building stock. Energy and Buildings, 43(10), 2779-87. [DOI:10.1016/j.enbuild.2011.06.036]
Zhang, Y., He, C. Q., Tang, B. J., & Wei, Y. M. (2015). China’s energy consumption in the building sector: A life cycle approach. Energy and Buildings, 94, 240-51. [DOI:10.1016/j.enbuild.2015.03.011]